Microstructure and Electrochemical Behaviour of some SnO₂-based Inert Electrodes in Aluminium Electrolysis

Ana-Maria Popescu, Suzana Mihaiu, and Stefania Zuca

Romanian Academy, Institute of Physical Chemistry "I.G.Murgulescu", Splaiul Independentei 202, Bucharest 77208, Romania

Reprint requests to A.-M. P.; Fax: +4-01-3121147; E-mail: ampop@chimfiz.icf.ro

Z. Naturforsch. **57 a,** 71–75 (2002); received August 20, 2001

Presented at the NATO Advanced Study Institute, Kas, Turkey, May 4 - 14, 2001.

Some types of anodes that could replace the usual carbon anodes in aluminium production by the Hall-Heroult process are based on SnO₂. The present investigation deals with SnO₂-Sb₂O₃-CuO ceramics having an SnO₂ content of $\geq 96\%$), Sb₂O₃ and CuO being dopants. The ceramic pellets, thermally treated at 1400 °C for 4 hours, were analysed by X-ray diffraction and IR spectroscopy. The structural analysis of the samples evidenced an SnO_{2 (ss)} type solid solution. All samples were electronically conductive (small negative values of the Seebeck coefficients), having an activation energy ranging within 0.02 - 0.3 eV.

The anodic polarisation curves obtained with those anodes in an electrolyte of 88% N₄AlF₆, 7% Al₂O₃ and 5% CaF₂ were studied. The results were correlated with the microstructure of the investigated samples.

Key words: SnO₂ Ceramics; Inert Anodes; Anode Polarisation; Molten Salts.